Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We conducted a macroscale study of 2,210 shallow lakes (mean depth ≤ 3m or a maximum depth ≤ 5m) in the Upper Midwestern and Northeastern U.S. We asked: What are the patterns and drivers of shallow lake total phosphorus (TP), chlorophyll a (CHLa), and TP–CHLa relationships at the macroscale, how do these differ from those for 4,360 non-shallow lakes, and do results differ by hydrologic connectivity class? To answer this question, we assembled the LAGOS-NE Shallow Lakes dataset described herein, a dataset derived from existing LAGOS-NE, LAGOS-DEPTH, and LAGOS-CLIMATE datasets. Response data variables were the median of available summer (e.g., 15 June to 15 September) values of total phosphorus (TP) and chlorophyll a (CHLa). Predictor variables were assembled at two spatial scales for incorporation into hierarchical models. At the local or lake-specific scale (including the individual lake, its inter-lake watershed [iws] or corresponding HU12 watershed), variables included those representing land use/cover, hydrology, climate, morphometry, and acid deposition. At the regional scale (e.g., HU4 watershed), variables included a smaller set of predictor variables for hydrology and land use/cover. The dataset also includes the unique identifier assigned by LAGOS-NE(lagoslakeid); the latitude and longitude of the study lakes; their maximum and mean depths along with a depth classification of Shallow or non-Shallow; connectivity class (i.e., whether a lake was classified as connected (with inlets and outlets) or unconnected (lacking inlets); and the zone id for the HU4 to which each lake belongs. Along with the database, we provide the R scripts for the hierarchical models predicting TP or CHLa (TPorCHL_predictive_model.R), and the TP—CHLa relationship (TP_CHL_CSI_Model.R) for depth and connectivity subsets of the study lakes.more » « less
- 
            The LAGOS-US LIMNO data package is one of the core data modules of LAGOS-US, an extensible research-ready platform designed to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). The LIMNO module contains in situ observations of 47 parameters of lake physics, chemistry, and biology (hereafter referred to as chemistry) from lake surface samples (defined as observations taken from the epilimnion of a lake) obtained from the Water Quality Portal, the National Lakes Assessment (2007, 2012, 2017), and NEON programs. LIMNO provides 3,511,020 observations across all parameters collected between 1975 and 2021 from 20,329 lakes; the number of observations per lake ranged from 1 to 20,605 with a median of 32. The database design that supports the LAGOS-US research platform was created based on several important design features: lakes are the fundamental unit of consideration, all lakes in the spatial extent above the minimum size must be represented, and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other, as well as other comprehensive lake data products such as the USGS NHD), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other two core data modules that are part of the LAGOS-US platform: LOCUS (location, identifiers, and physical characteristics of lakes and their watersheds) and GEO (characteristics defining geospatial and temporal ecological setting quantified at multiple spatial divisions) that are each found in their own data packages.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
